Книги Українською Мовою » 💛 Наука, Освіта » Пояснюючи світ 📚 - Українською

Читати книгу - "Пояснюючи світ"

В нашій бібліотеці можна безкоштовно в повній версії читати книгу онлайн українською мовою "Пояснюючи світ" автора Стівен Вайнберг. Жанр книги: 💛 Наука, Освіта. Наш веб сайт ReadUkrainianBooks.com дає можливість читати повні версії улюблених книг на Вашому гаджеті (IPhone, Android) або комп’ютері абсолютно безкоштовно, без реєстрації та СМС. Також маєте можливість завантажити книги на свій гаджет у форматі PDF, EPUB, FB2. Файли електронних книг - це цифрові файли, які призначені для перегляду на спеціальних пристроях, що відомі як читальні пристрої для електронних книг.

Шрифт:

-
+

Інтервал:

-
+

Добавити в закладку:

Добавити
1 ... 82 83 84 ... 108
Перейти на сторінку:
12 років для Юпітера та 29 років для Сатурна.

Зокрема, оскільки співвідношення радіусів деферента та епіциклу не змінюється, має бути збережена рівність:

rепі/rдеф = rз/rп,

де rепі та rдеф знову позначають радіуси епіциклу й деферента у схемі Птолемея, а rп та rз – радіуси орбіт планети й Землі в теорії Коперника (або те саме, що радіуси орбіт планет навколо Сонця та Сонця навколо Землі в теорії Тіхо Браге). Знову ж таки, усе сказане вище описує не те, як Птолемей дійшов своєї теорії, а лише те, чому ця теорія працювала так добре.

14. Місячний паралакс

Припустімо, що кут між напрямком до Місяця, який можна спостерігати з точки O на поверхні Землі, і напрямком до зеніту становить ζ´ (дзета штрих). Місяць рухається постійно й рівномірно навколо центра Землі, тому, використовуючи результати регулярних спостережень Місяця, можна обчислити напрямок від центра Землі C до Місяця M у той самий момент і, зокрема, обчислити кут ζ між напрямком від C до Місяця та напрямком до зеніту від центра Землі, що проходить через точку O. Кути ζ та ζ´ трохи відрізняються, бо радіус Землі rз не такий малий, як порівняти з відстанню до Місяця від центра Землі d, щоб ним можна було знехтувати. Саме з цієї різниці кутів Птолемей зумів обчислити співвідношення d/rз.

Точки C, O та M утворюють трикутник, у якому кут при вершині C дорівнює ζ, кут при вершині O дорівнює 180° − ζ´, а кут при вершині M дорівнює 180° − ζ − (180° − ζ´) = ζ´ − ζ, оскільки сума кутів будь-якого трикутника становить 180° (див. рис. 8). Ми можемо обчислити співвідношення d/rз зі значень цих кутів значно легше, ніж це робив Птолемей. Для цього ми використаємо теорему сучасної тригонометрії: у будь-якому трикутнику довжини сторін пропорційні синусам протилежних кутів (синуси розглядаємо в технічній примітці 15). Кут, протилежний відрізку СО довжиною rз, дорівнює ζ´ − ζ, а кут, протилежний відрізку CM довжиною d, дорівнює 180° − ζ´, тому:

1 жовтня 135 року Птолемей за допомогою спостереження виявив, що зенітний кут Місяця, якщо дивитися з Александрії, дорівнював ζ´ = 50°55’, а його обчислення показали, що в той самий момент відповідний кут дорівнював би ζ = 49°48´ у разі спостереження з центра Землі. Відповідні синуси цих кутів дорівнюють:

sinζ´ = 0,776 sin(ζ´ − ζ) = 0,0195.

Рис. 8. Використання паралакса для вимірювання відстані до Місяця. Тут ζ´ – кут між напрямком до Місяця в момент спостереження й вертикальним напрямком, а ζ – значення, яке мав би цей кут, якби Місяць спостерігали з центра Землі.

З огляду на це, Птолемей зумів зробити висновок, що відстань від центра Землі до Місяця в одиницях радіуса Землі дорівнює:

Цей результат значно менший за фактичне співвідношення, яке в середньому дорівнює приблизно 60. Проблема полягала в тому, що Птолемей насправді не мав точного значення різниці ζ´ − ζ, але цей результат принаймні давав уявлення про порядок величини відстані до Місяця.

У будь-якому разі Птолемей досягнув кращого результату, ніж Арістарх, який зі значень співвідношень діаметрів Землі та Місяця й діаметра Місяця та відстані до нього вивів би, що показник співвідношення d/rз лежить між 215/9 = 23,9 і 57/4 = 14,3. Але якби Арістарх використовував правильне значення приблизно в 1/2° для кутового діаметра диска Місяця, замість свого значення 2°, то отримав би в 4 рази більше значення d/rз, тобто таке, що лежить між 57,2 і 95,6. Цей діапазон саме містить справжнє значення.

15. Синуси та хорди

Математики та астрономи античності могли б багато чого зробити за допомогою такої сучасної галузі математики, як тригонометрія, яку сьогодні викладають у багатьох навчальних закладах. Тригонометрія пояснює, як обчислити співвідношення довжин усіх сторін прямокутного трикутника, з огляду на значення будь-якого його кута (крім власне прямого кута). Так, результат ділення катета, протилежного куту, на гіпотенузу дає величину, яку називають синусом цього кута. Значення синуса кута можна знайти в математичних таблицях або за допомогою калькулятора, якщо просто набрати значення кута й натиснути кнопку «sin». (Відношення катета, прилеглого до кута, до гіпотенузи є косинусом кута, а протилежного катета до прилеглого – тангенсом цього кута, але тут нам достатньо говорити лише про синуси.) Хоч в елліністичній математиці поняття синуса жодного разу не згадане, в «Альмаґесті» Птолемей усе-таки використовує пов’язану величину, відому як хорда кута.

Щоб визначати хорду кута θ (тета), накреслімо коло з радіусом 1 (у будь-яких одиницях довжини, що здадуться вам зручними), а також проведімо два радіальні відрізки від центра до окружності з кутом θ між ними. Хордою кута є довжина відрізка, або хорди, що з’єднує точки, де дві радіальні лінії перетинають окружність (див. рис. 9). В «Альмаґесті» подано таблицю хорд у вавилонській шістдесятковій системі числення з кутами, вираженими у градусах дуги, що йдуть від 1/2° до 180°. Наприклад, хорду 45° подано як 45 15 19, або, у сучасній (десятковій) системі числення,

тоді як справжнє значення становить 0,7653669…

Хорда має цілком природне застосування в астрономії. Якщо уявити, що зірки лежать на сфері з радіусом, що дорівнює 1, центром якої є центр Землі, то якщо лінії прямої видимості до двох зірок розділені кутом θ, видима відстань по прямій між цими зірками й буде хордою θ.

Рис. 9. Хорда кута θ. Коло тут має радіус, що дорівнює 1. Суцільні радіальні відрізки утворюють кут θ у центрі кола; горизонтальний відрізок, що проходить між точками перетину радіальних відрізків із колом, – хорда, а її довжина – це хорда кута θ.

Щоб зрозуміти, яке відношення ці хорди мають до тригонометрії, повернімося до рисунка, використаного, щоб визначити хорду кута θ, і проведімо відрізок (на рис. 9 – пунктирна лінія) від центра кола, який ділить хорду рівно надвоє. При цьому ми отримуємо два прямокутні трикутники, кожен із кутом при центрі кола, що дорівнює θ/2, та протилежною цьому куту стороною, довжина якої дорівнює половині хорди. Гіпотенуза кожного з цих трикутників є радіусом кола, який ми беремо

1 ... 82 83 84 ... 108
Перейти на сторінку:

 Увага!

Сайт зберігає кукі вашого браузера. Ви зможете в будь-який момент зробити закладку та продовжити читання книги «Пояснюючи світ», після закриття браузера.

Коментарі та відгуки (0) до книги "Пояснюючи світ"